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LETTER TO THE EDITOR 
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model at half-filling 
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Abstract. A quantitative estimate of the role of quantum fluctuations is given at zen, and finite 
temperatures within the one-loop approximation around the antiferromagnetic and dimer saddle 
pomts. Our results include the constraint af single occupancy of sites, also for thermodynamical 
quantities. 

The limit of the large4 Hubbard model at half filling i s  the spin-4 antiferromagnetic (AFM) 
Heisenberg model. In this work we report results of thermal and quantum fluctuations on an 
AFM background, and in dimer-ordered phases starting from a fermionic representation of 
the Hamiltonian [l]. Here the constraint of a single-site occupancy is a crucial ingredient. 

While quantum Monte Carlo approaches are restricted to relatively small systems [2], 
analytical methods to include the constraint originate from’the Gutzwiller projection [3]. 

The constraint is often implemented within the saddle-point approximation by a 
Lagrange multiplier (or slave bosons away from half filling [4]). However i t~ i s  hard to 
control its fluctuations both at zero and at finite temperatures. We have implemented it, at 
all temperatures, with a new method [SI, by means of a local chemical potential. 

The fluctuations are .calculated within the one-loop approximation around the chosen 
saddle point for an effective action. 

We find that, in  the AFM case, because the magnetization acts as a local mean field, 
our method guarantees that the constraint is fully satisfied at the mean-field level. In fact 
the mean square fluctuations of the occupancy (n; - 1) vanish at all temperatures when the 
constraint is evaluated by the saddle-point approximation. At zero temperature, the results 
of spin-wave theory for the AFM ground state energy are recovered. 

Zero-point fluctuations in the staggered and columnar dimer phases were first discussed 
by Read and Sachdev [6] within the SU(N) model. We show that their results in the N = 2 
limit do not differ from a fermionized theory in the absence of the constraint. In this case 
the fluctuations are unrealistically large. This is because unconstrained fermionization of 
spin operators enlarges the Hilbert space enormously in the case of the dimer phases, due 
to the opportunity given to the bond field to build up couplings to states which change the 
site occupancy. This implies that the mean-field free energy of the dimer phases is lowered 
too much, unless the constraint is enforced. 
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We show that application of the constraint raises the mean-field energy and reduces 
the fluctuations. However our approximations in dealing with it depress the mean average 
thermal fluctuations of the occupancy number in the dimer phase up to only 10% of the 
unconstrained value [7]. Evidently this is not enough because the energies we obtain are 
still too low compared with what is expected [SI. 

On the other hand while the saddle-point effective action cannot be promoted to a free 
energy when the constraint is added, we show that by including fluctuations, a physically 
meaningful temperature dependence is recovered. Figure 2 reports our results for the specific 
heat versus temperature. 

At half filling the spin-; AFM Heisenberg Hamiltonian can be rewritten, in the restricted 
Hilbert space with single-site.occupancy, as 

where the sum is over ordered nearest neighbour (NN) pairs of sites in the lattice and N is 
the number of sites. 

The partition function within the subspace of singly occupied states is 

where ni = nit +niJ; ni, = ciocicr t m =t, &. To implement the constraint we add a source 
term [5] to the Hamiltonian H ,  and define: H [ z j ]  = Ho - p- '  xi zini (the zj axe real 
variables). We call 2 [ z i ]  the generating functional of averages of the occupation numbers. 
The partition function of (2) can be recovered as 

The advantage is that the evaluation of 2[zj] only requires standard techniques because the 
trace is unrestricted and the source term commutes with Ho. The last feature is lost away 
from half filling. 

The Hubbard Stntonovich decoupling of HO requires an auxiliary field in imaginary 
time (denoted generically by U in the following), depending on the saddle point chosen: 

c c l s c i , p  + Ujj(z) (flux and dimer phases) 
0 

(AFM phase). (4) C,,,C~,~ t + y ~ ' 2 e i q R ~ ~ q ( t )  . U 

9 

Here U$(z) = U,j(z), the components of U are the Pauli matrices and yq = CNNeiqR = 
cos qx + cos qy. 

The x-flux phase [9] has been discussed by us elsewhere [7]. We have found that 
temperature destabilizes it more easily than the dimer phases due to the lower-lying 
excitations. However this phase, together with an AFM background was found to be a 
good starting point for Monte Carlo calculations at low doping [lo]. the order parameter 
Ujj of the staggered and columnar dimer phases are sketched in figure 1. Integrating out 
the fermions, one arrives at the intermediate result 



Figure 1. Pictorial =presentation of the link order panmeter U in terms of (a) U,, Uz, U,, U4 
for the staggered dimer phase (periodicity is along the diagonals), and (b) V, ,  V,, V3, V4 for 
the columnar dimer phase (periodicity is doubled on the x axes). Reversing the arrows implies 
complex conjugation. 

Where 0," = w,, - 0, is a Bose-like Matsubara frequency, 

for the AFM phase, while: 

for the dimer phases. Also, Go is the Green function in the absence of U ((Go)$' = 
(iwn)-'8;,j&,n,). Inserting this result into (3), we eventually obtain: 

The contribution of the constraint is represented by the last term of (8) with 

B;[U] = T~([xCOP;]~) +2Tr(xGoPj) - (Tr(,yCOP~})*. (9) 
Here x = (1 + GoU)-lIZi=o and we have, introduced the projector Pi onto the ith site of 
the lattice, whose matrix elements are ( P J j k  =Aj&.  

We now expand the action to second order around the mean-field saddle point: 
7 = + .F('). The second variation F@) is given by: 

The eigenvalues A(m) of the quadratic form are listed in table 1 ,  for the case without the 
constraint, together with their degeneracy and the component admixture which is present 
in the eigenvector. They are functions of S2, and are expressed in terms of the mean-field 
order parameters M (magnetization) and d (dimer bond). The functions E(m) ,  F(m) also 
appear, defined as 

4d2 
E(m) = 2MlYql 

F(m) = J a y  + (4M)* nit2 + 4d2 

where t = 1 / f l J .  In the case of the AFM phase, the longitudinal mode decouples with 
respect to the transverse ones. The collective excitation spechum can be obtained from the 
latter. In fact, one has to continue analytically the product A t F .  h i F  for iQ, + B o  + io 
and look for the zeros. The spin-waves dispersion is recovered in this way, that is: 
wy = Z M J J ( 1  - ( ~ ~ 1 2 ) ~ ) .  
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In the case of the dimer phase, the second variation fl2) can be expressed in terms of 
the complex variations ut(Q) ( I  = 1.4) for the staggered and q(Q) for the columnar phase 
which arc the Fourier transforms of U(i ,  r )  and are taken to depend on site and time (with 
Q (Q, Qm)). Here i spans just one of the sublattices, according to figure 1. In this case 
there is no Q dependence of the eigenmodes. 

In table 1 the zero modes are also indicated in the absence of the constraint. However, 
the features that we will discuss in the following are preserved by the inclusion of the 
constraint. The AFM phase has a vanishing eigenvalue for q = 0 and q = (n, n) = 7~ due 
to the self-consistent equation for the magnetization M. For the dimer phases there is one 
zero mode which corresponds to an overall change of the phase of the component of the 
order parameter d = (Ul ) .  In addition to this, the second variation of the actionaround the 
columnar phase saddle point is found to be flat versus two more amplitude deviations which 
add a small opposite weight on vertical bonds (mixing of the real or imaginary p&ts of zr, 
and U& leading to a ladder pattern for the order parameter. Quartic terms in the deviations, 
that are neglected here, would guarantee that the columnar-phase minimum is stable. 

The free energy per particle of the AFM phase, in units of J ,  is 

The zero-temperature limit is the well-known result of the first (l/S) correction 
2 RBZ 

f g o )  = ftF + ( 4 F G Z -  I) (13) 

where ftF = 2 ( M 2  - M )  = -0.5, (M = f) and the correction due to the fluctuations is 
-0.158. Addition of the constraint does not change the zero-temperature results but it  does 
change the thermodynamical quantities (see figure 2). 
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Figure 2. Temperatore dependence of the specific heat c(T) for the AFM phase (a)  and the 
staggered dimer phase (b). Full curves include the constraint while the broken ones do not 

In the case of the staggered dimer phase, the closed form for the free energy is 

where the constant Cv = 2d(2n/t)"z arises from the zero-mode integration. 
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Table 1. Eigenvalues of the second variation oftheeffective action. as functions ofthe Matsubara 
frequencies Qm, for the dimer and antiferromagnetic phases together with their degeneracy and 
the corresponding admixture of the fluctuating fields. The constraint is not included. Modes 
that vanish for S2 = 0 are explicitly indicated. All the quantities are defined in the text. 

For the columnar phase we get: 

where Cc = 2 3 d ( 2 ~ / t ) 3 / Z .  The saddle-point free energy f o  is equal for the two phases. Its 
zero-temperature value is: f o  = dZ - d - 1/2 = -3/4 (d = 0.5) without the constraint. 
Imposing the constraint this value rises to f o  = -0.375, that is the energy per particle of 
a collection of spin singlets. 

The contributlon of quantum fluctuations to the free energy at zero temperature, in the 
absence of the constraint, is 
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The factors 6, 3 and 2 come from the degeneracies of the eigenvalues. This result, derived 
first by Read and Sachdev 161 within the 1/N expansion, implies that the degeneracy of the 
staggered and the cohunnq phases is broken by quantum fluctuations and that the last one 
is favoured energetically. 

The eigenvalues mostly contributing to lower the energy for both periodicities are 
A y ( m  # 0). The presence of two extra amplitude modes of this kind in the columnar 
phase implies that the energy is lower in this case. 

We only report here the analytical zero-temperature result with the constraint included 

Afi:=", = -2d(l - l/&) (staggered) I. -I 

d (17) 
Af& = -- -d ( l  - 1/&) (columnar). 

2 
In the t = 0 limit the constraint only affects the contribution of the zero-mode eigenvalues 
and partially lifts the degeneracy of A?(m). Summing up, the constraint raises the zero- 
temperature energies including one-loop corrections from the values of - 1.095 (staggered 
phase) and -1.198 (columnar phase) up to -0.668 and -0.771 respectively. Although 
these values become comparable with the AFM result, within the same approximations, they 
are still lower than the AFM one, which is commonly accepted to be wrong [SI. We believe 
that fluctuations can be further depressed when the constraint is dealt with at a higher level 
of approximation. 

At finite temperatures, we have calculated the constraint violation within mean field, 
which is found to be about 10%. Its action is evident in the temperature dependence of the 
specific heat, as can be seen from figure 2(a, b). Spin waves dominate the specific heat of 
the AFM phase, which therefore remains quadratic in temperature close to t = 0, while the 
gapped spectrum of the dimer phase gives an exponential temperature dependence as seen 
in the inset of figure 2(b). The zero modes, being dispersionless in the dimer phases, do 
not change the gapped nature of the excitation spectrum. The figures show that our method 
of including the constraint up to one-loop corrections gives consistent finite-temperature 
results. 
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